Preliminary Note

Polyfluoroaromatic derivatives of metal carbonyls VIII*. Asymmetric pentafluorophenyl groups in some iridium complexes

R. L. BENNETT, M. I. BRUCE AND R. J. GOODFELLOW Department of Inorganic Chemistry, The University, Bristol, BS8 1TS (Great Britain) (Received August 7, 1972)

Treatment of $IrCl(CO)(PPh_3)_2$ with LiC_6F_5 or AgC_6F_5 affords bright yellow $Ir(C_6F_5)(CO)(PPh_3)_2$ (I), m.p. 208–210°(dec.), with v(CO) 1965 cm⁻¹. In the ¹⁹F NMR spectrum, two resonances occur at 114.8 (multiplet, intensity 2, *ortho*-F) and 165.1 p.p.m. (multiplet, intensity 3, overlapping *para*- and *meta*-F)².

Oxidative-addition reactions proceed less readily with (I) than with Vaska's complex, as expected. Addition of hydrogen halide or of halogen occurs to give the white complexes $Ir(C_6F_5)(CO)(PPh_3)_2XY$ (XY = Cl₂, Br₂, HCl, HBr, *etc.*). The ¹⁹F NMR spectra of these complexes are unusual in showing *five* resonances, all of equal intensity, with chemical shifts listed in Table 1. The spectra of analogous complexes containing PMePh₂ in place of PPh₃ show only the usual three resonances with a 2:1:2 intensity pattern.

We have ruled out the possibility that a fortuitous equimolar mixture of isomers gives rise to the observed spectra by a detailed analysis (including appropriate decoupling experiments) of the spectrum of $Ir(C_6F_5)(CO)(PPh_3)_2HCl$ (II) (see Fig. 1). The derived coupling constants are listed in Table 1. The proton

TABLE 1

¹⁹ F CHEMICAL SHIFTS (p.p.m. upfield from CFCl ₃) $Ir \longrightarrow F^{6} F^{5}$					
Complex	F²	F ⁶	F ³	F ⁵	F ⁴
$Ir(C_6F_5)(CO)(PPh_3)_2Cl_2$	103.3	108.6	163.5	164.5	162.0
Ir(C ₆ F ₅)(CO)(PPh ₃) ₂ Br ₂	101.8	104.0	163.2	164.1	161.4
$Ir(C_6F_5)(CO)(PPh_3)_2I_2$	95.8	100.1	162.9	164.3	161.1
Ir(C ₆ F ₅)(CO)(PPh ₃) ₂ HCl ^a	100.1	112.2	164.5	166.0	163.2
Ir(C ₆ F ₅)(CO)(PPh ₃) ₂ HBr	99.5	108.8	164.4	165.5	163.1
$Ir(C_6F_5)(CO)(PPh_3)_2$	114.8		165.1		
$Ir(C_6F_5)(CO)(PMePh_2)_2Cl_2$	110.0		166.0	162.0	

^a Coupling constants: *J*(2,3), 28.5; *J*(2,4), 0; *J*(2,5), 7.0; *J*(2,6), 0; *J*(3,4), 20.0; *J*(3,5), 3.5; *J*(3,6), 9.0; *J*(4,5), 20.0; *J*(4,6), 0; *J*(5,6), 26.0 Hz.

* For Part VII, see Ref. 1.

J. Fluorine Chem., 2 (1972/73)

NMR spectrum contains a high-field signal at τ 26.15, assigned to the metalbonded proton (triplet of doublets, J(HP), 12; J(HF), 6 Hz).

This is the first example of a compound containing a pentafluorophenyl group in which all five fluorine atoms are inequivalent. This feature results from restricted rotation of the C_6F_5 group, probably caused by its being positioned between two mutually-*trans* PPh₃ groups. Although the stereochemistry of (II) cannot be unequivocally determined, the proton NMR spectrum of the analogous PMePh₂ complex exhibits an apparent triplet for the PMe groups, suggesting that the two phosphorus ligands are mutually *trans* in this complex. The coupling of the IrH to only one fluorine suggests that it is *cis* to the C₆F₅ group; it has not yet been possible to determine the relative positions of the Cl and CO groups.

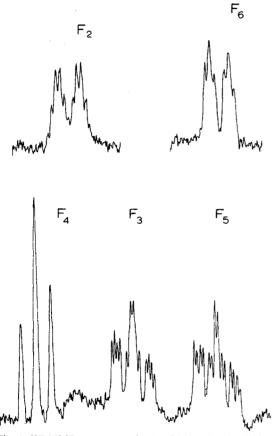


Fig. 1. ¹⁹F NMR spectrum of Ir(C₆H₅)(CO)(PPh₃)₂HCl.

REFERENCES

- 1 M. I. BRUCE AND A. D. REDHOUSE, J. Organometallic Chem., 30 (1971) C78.
- 2 M. I. BRUCE, J. Chem. Soc. (A), (1968) 1459; F. J. HOPTON, A. J. REST, D. T. ROSEVEAR AND F. G. A. STONE, J. Chem. Soc. (A), (1966) 1326.